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Using a stochastic quantum approach, we study thermoelectric transport phenomena at low temperatures in
disordered electrical systems connected to external baths. We discuss three different models of one-
dimensional disordered electrons, namely, the Anderson model of random on-site energies, the random-dimer
model, and the random-hopping model—also relevant for random-spin models. We find that although the
asymptotic behavior of transport in open systems is closely related to that in closed systems for these nonin-
teracting models, the magnitude of thermoelectric transport in finite systems strongly depends on the boundary
conditions and the baths spectral properties. This shows the importance of employing theories of open quantum
systems in the study of energy transport.
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I. INTRODUCTION

Thermoelectric phenomena are attracting considerable at-
tention both theoretically and experimentally due to their
fundamental unsolved aspects as well as their impact in
energy-conversion technology.1 Here, we study thermoelec-
tricity in disordered systems and the role of localization,2

focusing mainly on energy transport by electrons. In real
solids, electrical transport at finite temperatures is also con-
trolled by inelastic electron-phonon scattering. Thus, we will
only consider energy transport by electrons at low tempera-
tures in the quantum regime. Quite often, despite their intrin-
sic open quantum system character, thermoelectric phenom-
ena in disordered electrical systems are described within the
framework of closed quantum systems, namely, systems that
do not exchange particles and/or energy with the
environment.3,4 In fact, it has been shown that energy trans-
port in open disordered harmonic chains is dependent not
just on the properties of the system but also on the baths
connected to it,5 as well as the boundary conditions.6 Also,
there is a large class of driven disordered lattice gas models
of particles hopping on a lattice and interacting through hard-
core exclusion where the nonequilibrium transport properties
depend on the boundary conditions.7 It is then natural to ask
whether there are other fundamental properties of thermo-
electric phenomena that are not captured by closed-system
theories and an open quantum system approach is necessary.

To the best of our knowledge there are only a few micro-
scopic studies �without assuming an explicit functional form
of electrical conductivity� on thermoelectric transport prop-
erties in disordered closed systems.8,9 Recently, energy trans-
port by electrons in disordered chains has been studied
within an open quantum system approach10 but this study
does not address the thermodynamic limit of system size and
thus cannot be directly compared with the results of closed
system theories. We therefore study thermoelectric transport
in a few models of open one-dimensional �1D� noninteract-
ing disordered systems. Our main result is that although the
asymptotic nature of transport at low temperatures in open
systems is closely related to that in closed systems, the mag-
nitude of thermoelectric transport in finite systems strongly

depends on the boundary conditions and the baths’ proper-
ties.

We employ a stochastic approach to investigate steady-
state charge and energy transport in disordered noninteract-
ing tight-binding lattices. This formalism has been exten-
sively applied to study thermal transport in classical
disordered lattices5,11 as well as quantum electrical12 and
phononic13 systems. Its main advantage is that one can ex-
plicitly consider the effect of baths and system-bath cou-
pling. In this Brief Report, we consider only noninteracting
electrons. Interactions could be included by, e.g., working
with a stochastic Schrödinger equation in the context of
time-dependent current-density-functional theory, as it has
been recently suggested in Ref. 14. However, we leave this
study for future investigations.

We consider three different 1D tight-binding models of
disordered electrons, namely, the Anderson model of random
on-site energy �diagonal disorder�,2 the random dimer model
�short-range correlated disorder�,15 and the random hopping
model �off-diagonal disorder�.16 All states in the 1D indepen-
dent random on-site energy Anderson model �AM� are expo-
nentially localized for any strength of disorder;17 thus there
is no localization-delocalization transition in 1D. Now, one
can have a localization-delocalization transition in 1D by
introducing correlations �short or long range� in the random
variables. The random dimer model �RDM� is the simplest
example of that, where one or both of the two possible ran-
dom on-site energies �a and �b are random in pairs. It has
been shown that when both site energies appear in pairs there
exist two real critical points with critical energies �a and �b if
��a−�b��2t, where t is the constant hopping strength be-
tween sites.18 The random hopping model �RHM� is an ex-
ample of a 1D model where a delocalized state appears at the
band center even without any correlation in the
randomness.16 The last model has many common features
with a wide class of random spin chains such as random XY
spin chains. All of the above results for the different disor-
dered models have been derived for closed systems. Here we
are particularly interested to know how these results are af-
fected by the coupling with baths and what consequences we
should expect on thermoelectric phenomena.
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II. MODEL AND METHOD

The full system consists of a disordered wire of N sites
and two infinite baths being connected to the wire at the two
ends. The Hamiltonian is

H = HW + HR
L + HR

R + VWR
L + VWR

R , �1�

where HW=−�l=1
N−1tl�cl

†cl+1+cl+1
† cl�+�l=1

N �lcl
†cl and HR

i =

−�i��=1
� �c�

i†c�+1
i +c�+1

i† c�
i � with i=L,R, and VWR

L =−�L��c1
L†c1

+c1
†c1

L� and VWR
R =−�R� �c1

R†cN+cN
† c1

R�.
Here cl, c�

L, and c�
R denote operators on the wire, the left

and the right baths, respectively. The Hamiltonian of the wire
is denoted by HW, that of the left �L� and the right �R� bath
by HR

i �with i=L,R�; the tunneling Hamiltonian between the
wire and the left �right� bath is VWR

L �VWR
R �. The tunneling

from the disordered wire to the baths is controlled by the
parameters �i�. The AM of diagonal disorder is defined by
constant electron hopping, i.e., tl= t for l=1,2 , . . . ,N−1, and
a distribution for the identically distributed independent ran-
dom site energies �l. In the RDM tl= t for l=1,2 , . . . ,N−1
but there are only two values of on-site energy �l=�a or �b
which are assigned randomly in pairs with probabilities p
and 1− p, respectively. Finally, in the case of the RHM, �l
=0 for l=1,2 , . . . ,N, and the parameters tl are chosen from
an independent random distribution.

We assume that each bath is in equilibrium at a specified
temperature Ti and chemical potential �i �with i=L,R� be-
fore coupling it with the wire. The coupling of the baths with
the wire introduces noise and dissipation in the wire. We
apply the stochastic approach following Ref. 12 to derive
steady-state charge and energy current in the wire. Let us
define jp and ju as the particle and the energy current density,
respectively.

jp =
1

2�
�

−�

�

d�T1N����fL − fR� , �2�

ju =
1

2�
�

−�

�

d�	�T1N����fL − fR� , �3�

where T1N=4�2�L�
2�R�

2
L���
R����G1N�2 /	4, Ĝ= Ẑ−1, Ẑ=�̂

− �̂���, and

�lm = �� −
�l

	
�l,m +

tl

	
l,m−1 +

tm

	
l,m+1. �4�

Here �̂ is the Hamiltonian matrix of the disordered wire

and Ĝ is the full Green’s function of the wire coupled with

the baths. The self-energy correction �̂, coming from the
baths, is a N�N matrix whose only nonzero elements are
�11 and �NN. In the following we set 	=1 and discuss the
case in which �L=�R=�, �L� =�R� =��, which corresponds to
symmetric coupling to the baths. In this case, �R

+���
=�L

+���=����=��2g1,1��� where g1,1��� is the single-
particle Green’s function of the isolated bath at the first site
�=1

g1,1��� =
1

�
� �

2�
− i�1 −

�2

4�2�1/2	 .

Also in Eqs. �2� and �3�, f i=1 / 
exp���−�i� /kBTi�+1 is the
Fermi function of the ith bath and 
i���=−Im�g1,1���� /� is
the local density of states at the first site ��=1� on the ith
bath. It can be shown that T1N��� is the transmission coeffi-
cient of an electron from the left to the right bath through the
disordered chain at energy �. Interestingly for �=1 �ideal
baths� and ��=1 �ideal contacts� the above formulation
merges with the Landauer theory of transport.

We are interested in the system properties in the thermo-
dynamic limit. We thus extend a technique originally devel-
oped by Dhar5 to determine steady-state thermal currents in a
disordered harmonic chain connected to baths to the present
case of disordered electrical open quantum systems. This
technique is a generalization of the popular recursive Green’s
function method9 to open systems. We are interested in find-
ing the asymptotic system size �N� dependence of the steady
state �jp� and �ju�, where �¯ � denotes average over disorder
realizations. Following5,6 we now separate out the wire and
the bath contributions in G1N and write them explicitly

�G1N�2 = ��N����−2�
l=1

N−1

tl
2 �5�

with

�N��� = D1,N − �����D2,N + D1,N−1� + �2���D2,N−1,

where �N��� is the determinant of Ẑ and Dl,m is the determi-

nant of the submatrix of �̂, beginning with the lth row and
column, and ending with the mth row and column. We can
numerically compute the elements Dl,m efficiently by taking

the product of the 2�2 random matrices T̂l

D̂ = �D1,N − D1,N−1

D2,N − D2,N−1
� = T̂1T̂2, . . . ,T̂N, �6�

where

T̂l = �� − �l − tl
2

1 0
� for l = 1,2, . . . ,N − 1,

and

T̂N = �� − �l − 1

1 0
� .

After a little algebra we find

��N����2 = D1,N
2 +

��8

�4 D2,N−1
2 +

��4

�2 �D2,N + D1,N−1�2

−
��2

�2 ��D1,N +
��4

�2 D2,N−1��D2,N + D1,N−1�

+
��4

�2 ��2

�2 − 2�D1,ND2,N−1. �7�

We compute �T1N���� numerically using Eqs. �5�–�7�. The
above formulation can be used to find steady-state currents at
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finite bias but in this Brief Report we are interested in the
linear response regime at low temperatures, i.e., ����,
�T�T and kBT�� with ��=�L−�R, �T=TL−TR, �
= ��L+�R� /2, and T= �TL+TR� /2. In the linear response re-
gime we write the heat current as jh= ju−�jp. We then find

jp =
− 1

2�
�T1N����� +��2kB

2T

3

dT1N

d�
�

�=�

�T	 ,

jh =
− 1

2�
���2kB

2T2

3

dT1N

d�
�

�=�

�� +
�2kB

2T

3
T1N����T	 .

III. RESULTS

We thus see from the above results that particle and ther-
mal conductances scale similarly even in the disordered open
quantum systems and the Weidemann-Franz relation is valid
in the absence of interactions. We also note that the
asymptotic size dependence of the electrical and thermal
conductances depend on the asymptotic behavior of
�T1N����. Hereafter we will then focus on this quantity. We
find that for independent random distribution of on-site dis-
order in the 1D AM, both particle current and heat current
become exponentially small in the asymptotic limit of sys-
tem size in the closed as well as the open systems. Thus the
behavior of �T1N���� in the asymptotic regime is dominated
by localization physics and there is clearly no diffusive be-
havior satisfying either Ohm’s or Fourier’s law. The
asymptotic character of the eigenstates of disordered systems
is quantified through the localization length ���� which is
defined by19

limN→� N−1 ln�T1N���� = − 2/���� . �8�

For a disordered tight-binding chain of lattice constant a,
with a random on-site potential �l at each site l drawn from a
Gaussian distribution of mean zero and variance �2, the lo-
calization length of the closed chain is given by ��EF�
=2�a /�2��4t2−EF

2�, where EF is the chemical potential at
zero temperature or the Fermi energy.20 Thus ��EF�=3000
for �2=0.0025t2 and EF=−0.5t with a=1. We compute nu-
merically the localization length in the disordered closed and
open chains for the same above parameters using the defini-
tion of Eq. �8�. We find in numerics with t=1 and a=1 �see
Fig. 1� that ��EF���6000� is the same for both the closed and
the open chains ���=0.7, �=1.2�. We also find that the
magnitude of �T1N���� in the open chains falls rapidly from
that of the closed chains for any changes in � and �� from
the unity. This is expected and can be understood physically.
Any value of � and �� different from unity introduces extra
scattering in the chain and thus reduces the magnitude of
�T1N����.

It has been shown in Ref. 18 that all states of the closed
RDM are localized except at the two energies �a and �b
which are real critical points with infinite � if ��a−�b��2t. In
numerics with the closed systems we instead find that though
�T1N���� at �=�a or �b remains constant with increasing sys-
tem size, it decays algebraically ��T1N�����N−2� with sys-
tem size for ��a−�b��2t. Thus it is hard to conclude convinc-

ingly whether the energies �i.e., �=�a or �b� are true critical
points for ��a−�b��2t. Interestingly, the sample to sample
fluctuations in �T1N���� for the latter case decay with in-
creasing system sizes while away from these energies �or in
the AM� the sample to sample fluctuations in �T1N���� do not
fall with increasing length. In the open systems �with � ,��
�1� we again find similar asymptotic behavior as the closed
systems in numerics. Thus in open systems the transport is
ballistic at �=�a or �b for ��a−�b��2t and it shows power-
law dependence on length at �=�a or �b for ��a−�b��2t.

It has been argued from simple considerations that for the
closed RHM, a state at the band center, �=0, is extended and
all other states are exponentially localized.16 Here, again we
find in numerics that �T1N�0�� does not remain constant as a
function of N in the closed and open RHM but it decays with
increasing N. The asymptotic length dependence of �T1N�0��
is given by N−0.5 �see Fig. 2�. We use a uniform distribution
between t and t+�t for tl. The RHM model is equivalent to
a disordered linear chain of harmonic oscillators for closed
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FIG. 1. �Color online� Plot of �T1N�−0.5�� versus N for three
different sets of � and �� in the AM with t=1. �l at each site l is
drawn from a Gaussian distribution of mean zero and variance �2

=0.0025. The full curve is asymptotic scaling of �T1N�−0.5�� for all
three sets of parameters.
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FIG. 2. �Color online� Plot of �T1N�0�� versus N in the pinned
and unpinned RHM for different � ,�� with t=0.8 and �t=0.2. The
two straight lines correspond to the asymptotic of �T1N�0��. The
sample to sample fluctuations in T1N�0� are quite large �on the order
of �T1N�0��� and do not decay with increasing realizations or system
size.
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systems.16,21 Here, we wish to compare the open system re-
sults of the RHM with that of the random spring harmonic
chains. Recently the authors of Ref. 22 have investigated
heat conduction in random spring quantum harmonic chains
for shorter lengths but they were not able to conclude about
the length dependence of the disorder averaged steady-state
thermal current ��J�� in the spring model. It has been already
argued in Ref. 6 that the asymptotic length dependence of the
classical and quantum thermal currents are similar in disor-
dered harmonic chains. Also the asymptotic length depen-
dence of �J� in the random spring harmonic chains, for two
different models of baths �Rubin’s baths: ����=k
1
−m�2 /2k− i��m /k�1/2�1−m�2 / �4k��1/2 with k the spring
constant and m the mass of the lattice site; and white-noise
baths: ����=−i��� are similar to that of the random mass
harmonic chains: �J��N−0.5 for Rubin’s baths and �J�
�N−1.5 for white-noise baths. Interestingly, we see that the
asymptotic length dependence of thermal currents in the Ru-
bin’s bath case is similar to that of the open RHM. We fur-
ther put two pinning potentials ��1=�N=1� at the two ends of
the RHM to examine the effect of different boundary condi-
tions. We find that the scaling of �T1N�0�� remains the same
as the unpinned case �see Fig. 2�. Two external quadratic
pinning potentials at the two ends of the disordered harmonic
chain with Rubin’s baths change the asymptotic length de-
pendence of �J� to N−1.5, thus showing a difference in energy
transport by the RHM and the random spring harmonic
chain. This can be understood as follows. While energy
transport in tight-binding chains mostly occurs by electrons
at the chemical potential, the full band of conducting modes
in harmonic chains carries energy. The external pinning does
not affect the band center in the RHM, but breaks the trans-
lational invariance in the harmonic chains and pinches off
the band of conducting modes from the zero-frequency side,
thus reducing �J�.

In conclusion, we have shown that the asymptotic nature
of thermoelectric transport in the noninteracting disordered
open systems is quite similar to that in the closed systems.
However, the magnitude of thermal and electrical conduc-
tances is smaller in the open systems compared to that in the
closed systems. In earlier studies the effect of coupling with
baths has been included through a phenomenological lifetime
due to inelastic scattering from the baths. This is done by
energy continuation into the complex plane. Here, we have
explicitly included the baths in our microscopic analysis.
Since the technique used in this paper can be extended to
higher dimensions following Ref. 23, it would be interesting
to analyze our results in two dimension and three dimension
�3D�. One relevant application would be the study of ther-
moelectric transport in disordered graphene connected to
electrodes.24 It is known that the Anderson localization-
delocalization transition in the random 3D AM is smoothed
in the presence of inelastic scattering �due to baths� but it
would be important to check how the corresponding trans-
port properties are affected by explicit coupling with the
baths near the transition. Experiments in disordered systems
are mostly carried out in open configurations. In fact, many
real disordered systems such as doped polyaniline, random
semiconductor superlattices,25 and random antiferromagnetic
spin chains26 are considered to have similarity with the RDM
and the RHM. Therefore, we expect our results to be useful
in understanding experiments in these systems.
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